A Calorimeter for Energy Flow

L.P.N.H.E. - Ecole Polytechnique

J-C. Brient

OUTLINE

Questions for a calorimeter design

- which final state should we consider?
- Eflow and jet content
- Which Eflow?
- Figure of merit for different Eflow
- Jet resolution dependence on the calorimeter performance
- Which technical solution for a calorimeter
- Geant-4 simulation for performance study
- Conclusion

Which final state for some physics processes

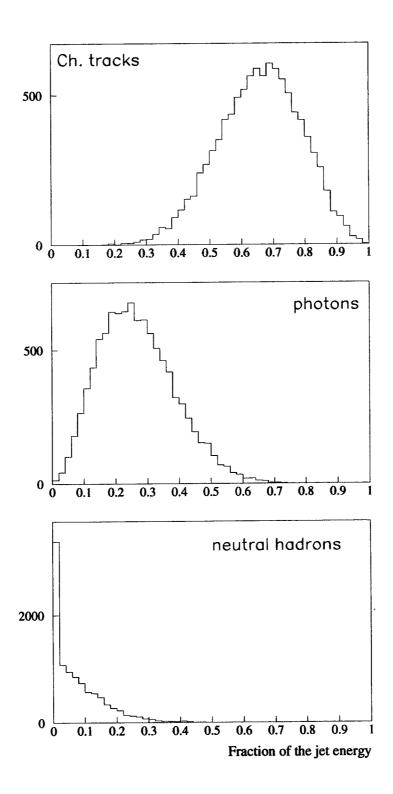
physic process	final state
$e^+e^- \rightarrow$	
$Z(+\gamma)$	2ℓ , 2 jets
W^+W^-	$2\ell+2$ jets , 4 jets
$\int { m t} {ar t}$	ℓ +jets , 6 jets
$ t\overline{t} H$	8 jets
ZH	$2\ell+2$ jets , 4 jets
ZHH	$2\ell+4$ jets , 6 jets
$\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$	jets + 戊
$ig ilde{ ilde{ t t}} ar{ ilde{ ilde{ t t}}}$	6 jets + 戊
$\not R$ p $-\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$	2ℓ +4jets , 6jets
\not Rp $- ilde{\chi}^+ ilde{\chi}^-$	2ℓ +6jets, 10 jets
graviton	non-pointing photon
Extra-dimension	$\gamma + ot\!\!\!/ \!$

WICH EFLOW?

For example $e^+e^- \rightarrow Z h$ and $h\rightarrow 2$ b-jets at $\sqrt{s}=230$ GeV 2 jets with about 60 GeV each.

see figure

EFLOW type	< Especies/Ejet $>$ (%)
Ch. track	65
Photon	27
Neutral hadron	8


EFLOW using calorimetry only

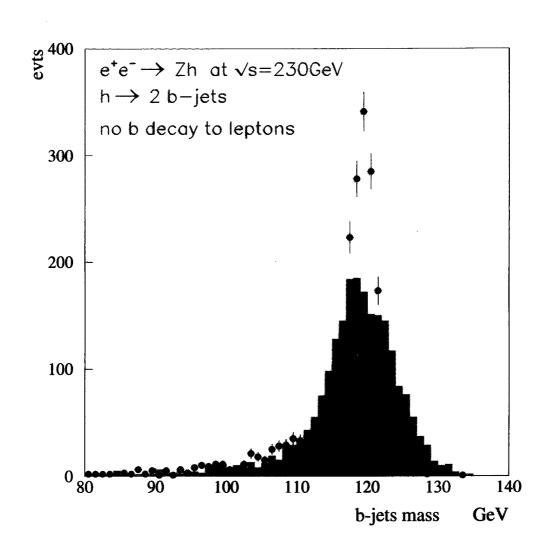
- $\bullet \sim 7\%$ of the "charged" energy never reach the calorimeter (for B=3T and R=170cm). Actually, they reach the calorimeter in the end-cap after multi-turn or they interact with the mask and are partially absorbed.
- The jet resolution $\Delta E_{jet}/E_{jet}$ is poor (see figure)
- Due to the B-field, the di-jet mass resolution is dramatically downgraded (a factor about 2.1) see figure

EFLOW using track information

- Identification and reconstruction of all EFLOW Objects
- With the energy distribution of the charged track, it is intrinsically better for jet energy resolution
- $\Delta \phi_{jet-jet}$ is much better (no B-field effect), consequently the di-jet mass is much better

Fraction of the jet energy per species

Black dots EFLOW using tracking info. with a "standard" detector


- $\Delta E/E = 15\%/\sqrt{(E)} \oplus 0.01$ for ECAL
- $\Delta E/E = 50\%/\sqrt{(E)} \oplus 0.02$ for HCAL

green histogram EFLOW using Calor. info. only with an improved detector

values taken from the CDR-DESY

- $\Delta E/E = 10\%/\sqrt{(E)} \oplus 0.006$ for ECAL
- $\Delta E/E = 40\%/\sqrt(E) \oplus 0.01$ for HCAL

Both jets inside barrel

Example with ALEPH

ECAL

- $19\%/\sqrt{E} \oplus 0.01$, 3x3cm towers ,3 segmentations in depth
- \bullet threshold for photon: E $\gamma > 0.25~{\rm GeV}$, Dist. $\gamma/{\rm track} > 2{\rm cm}$
- fraction of hadronic fake for a 10 GeV π^{\pm} is 15% (Important parameter if the Bfield is large)

HCAL

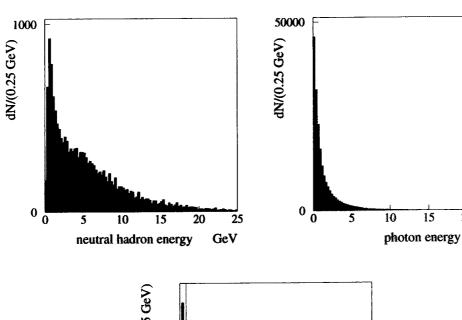
- with ECAL, $85\%/\sqrt{E}$ for hadron
- ullet BUT No neutral hadron reconstruction subtraction of charged energy linked to the same HCAL cluster with cuts on $E_{cluster}-E_{ch.track}$ and a threshold at 0.5 GeV

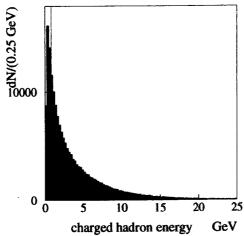
TRACKER

- $\delta p/p^2 \sim 6 \ 10^{-4}$
- threshold 0.2 GeV with vertex constraint

jet resolution

 $\Delta \mathrm{E_j/E_j} \sim 60\%/\sqrt{\mathrm{E_j}}$

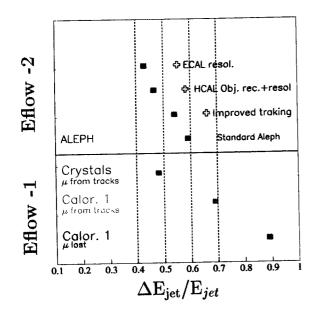

The quality for this type of Eflow depends on

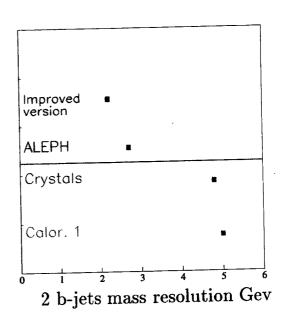

- 1 The efficiency to tag all the Eflow object
- 2 The rate of "misidentification" ε (noise \rightarrow Eflow) noise coming from the debris of the charged hadronic interaction, coming from machine background, etc...
- 3 The energy resolution for each species of Eflow object

From point 1 and 2, high 3-D granularity

Which energy region for each species?

See the energy distribution for each species from 20K jets





GeV

Some comparisons on jet resolution

For the mass
Higgs 120 GeV in 2 b-jets
no b decays with leptons $\theta_{jet} > 15$ degres

Eflow -1 is purely calorimetric Eflow -2 is using the tracks info.

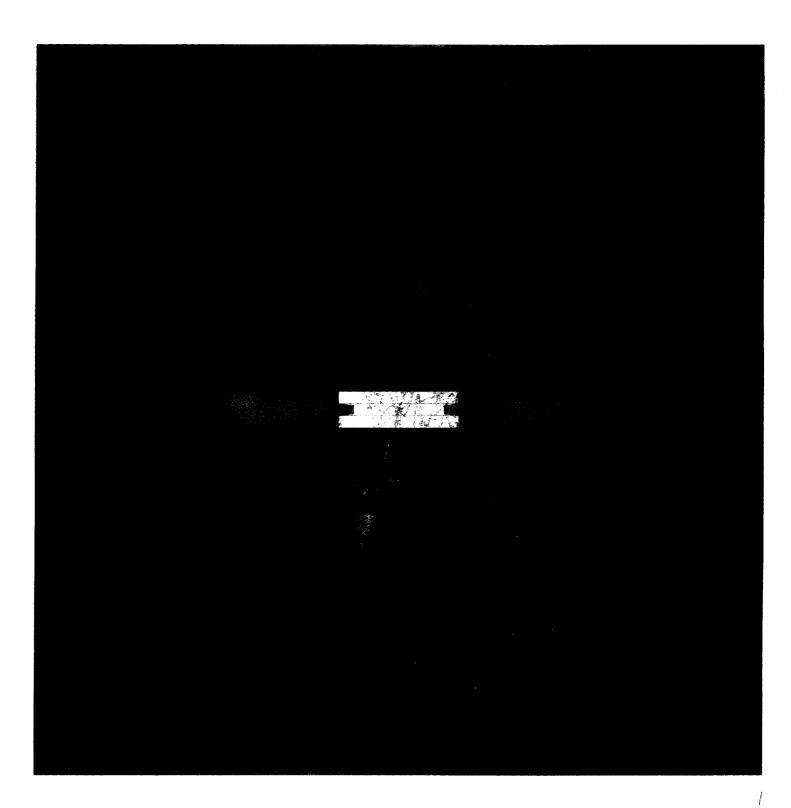
calor 1:

ECAL $\Delta E/E = 0.10/\sqrt(E) \oplus 0.5\%$

HCAL $\Delta E/E = 0.40/\sqrt(E) \oplus 4.0\%$

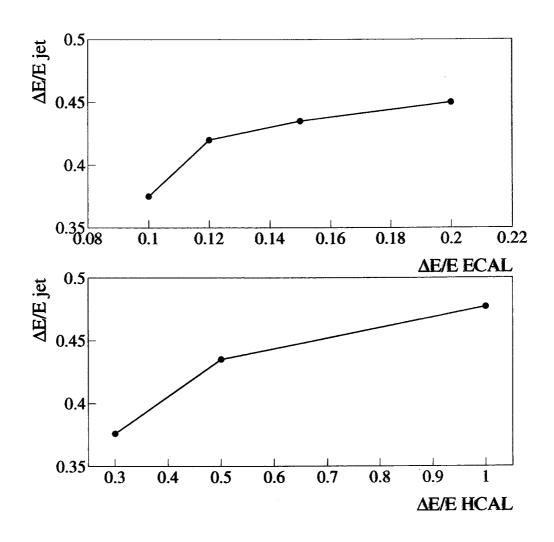
Crystals:

ECAL $\Delta E/E = 0.03/\sqrt(E) \oplus 0.5\%$ "a la CMS" barrel

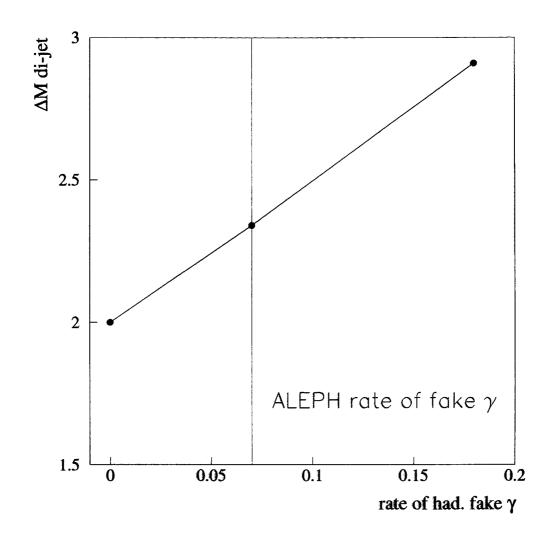

HCAL $\Delta E/E = 0.40/\sqrt(E) \oplus 1.0\%$

final ALEPH improved version:

ECAL Δ E/E= $0.15/\sqrt(E) \oplus 1.0\%$


HCAL $\Delta E/E = 0.50/\sqrt(E) \oplus 1.0\%~BUT~HCAL~obj.$ reconstruction

Tracking "a la CDR ECFA/DESY"


Variation with calorimeter resolution

polar angle of the jet > 15 degrees for Eflow type 2

WARNING from hadronic fake photon

the rate of "hadronic" fake photon is crucial for the di-jet mass resolution (again , 2b-jets, no b decays with lepton) define the rate as the average value of Nfake/Ncharged

TITLE CONTROL LCD.

MAN 1000

some important numbers

 $e^+e^- \rightarrow \mathbf{Z} \mathbf{h} \mathbf{and} \mathbf{h} \rightarrow \mathbf{2} \mathbf{b}\text{-jets at } \sqrt{s} = \mathbf{230} \mathbf{GeV}$

Photon energy in GeV

processes	E<0.2	E<0.5	E<1.
$h \rightarrow 2 \text{ jets}$	20%	40%	60%

distance γ /closest charged track

processes	d<2cm	d<10cm	d<20cm
$h \rightarrow 2 \text{ jets}$	0.4%	16%	43%

 $e^+e^- \rightarrow 2 \text{ jets}, \ \tau^+\tau^- \ \text{ at } \sqrt{s} = 800 \text{ GeV}$

Photon energy in GeV

processes	E<0.2	E<0.5	E<1.
$Z \rightarrow 2 \text{ jets}$	19%	30%	41%

distance γ /closest charged track

processes	d<2cm	d<10cm	d<20cm
$Z \rightarrow 2 \text{ jets}$	11%	26%	41%
$\tau^+\tau^-$	36%	91%	97%
A			

WARNING for electron ID.

distance γ /closest neutral hadron

processes	d<5cm	d<10cm	d<20cm
$Z \rightarrow 2 \text{ jets}$	9%	15%	21%

i

Key points for a calorimeter dedicated to this type of EFLOW

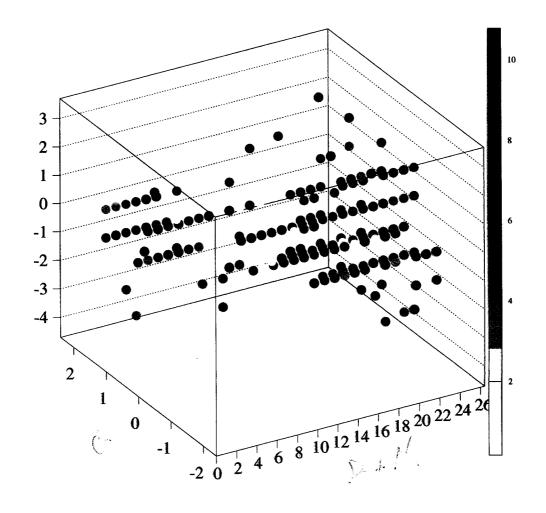
General comment:

• The e/π ratio is not important

ECAL

- Resolution
- Reconstruction of EFLOW object : e^{\pm} , γ and neutral hadrons vs charged hadron and their "noise"
- Threshold for low energy photon and distance cut to the closest charged hadron

Density, Granularity and Segmentation, Resolution


HCAL

- Resolution
- Reconstruction of EFLOW object : reconstruction of neutral hadron versus large hadronic shower coming from charged hadron

Tracking calor., Granularity and Segmentation, Resolution

 $10~{\rm GeV}~\pi^-$ at 1 cm from a 500 MeV photon

Geant-4 simulation

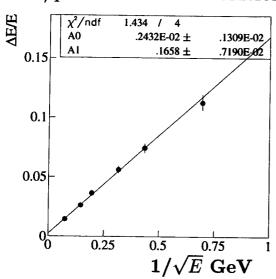
In 3-D calorimeter

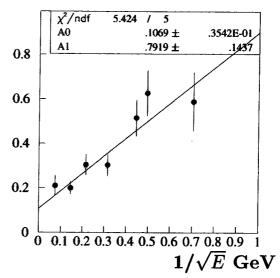
Need a 3-D clustering algorithm

Which technic for a segmented calorimeter?

ECAL	HCAL
Si-W	Si-Fe
Si-W	ScintFe
ScintW	ScintFe

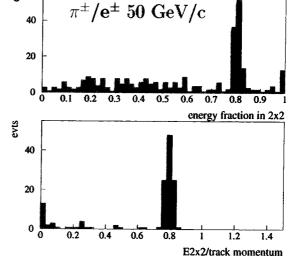
BECAUSE


- 1 Avoid Cu radiator in 3T B-field (discharge)
- 2 Using Lead for ECAL has no mechanical and technical advantage but the cost is lower
- 3 The price of Si-MR (middle resistivity) has gone down in the past few years
- The geometry of a segmented calorimeter without too many dead regions is difficult
- In any case, number of channels is large
- For each choice there is a lot of problems to solve

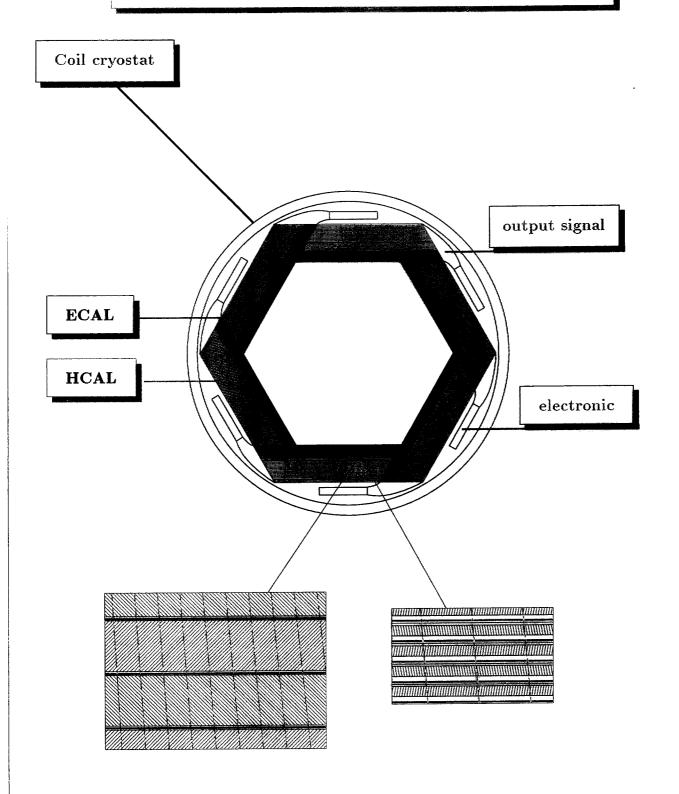

Geant-4 simulation Si-W

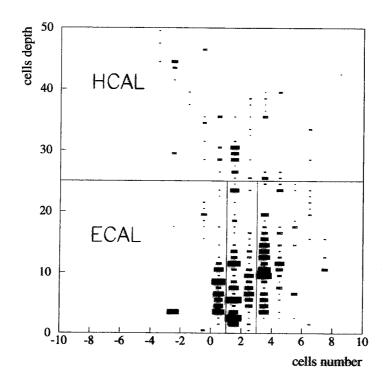
ECAL = $50 \times (.18 \text{cm(W)} + 300 \mu \text{m(Si)} + 0.27 \text{cm(Air)})$ pad area $1 \times 1 \text{ cm}^2$ HCAL = $20 \times (.2 \text{cm (Fe)} + 300 \mu \text{m(Si)} + 0.27 \text{cm(Air)})$ pad area $1 \times 1 \text{ cm}^2$

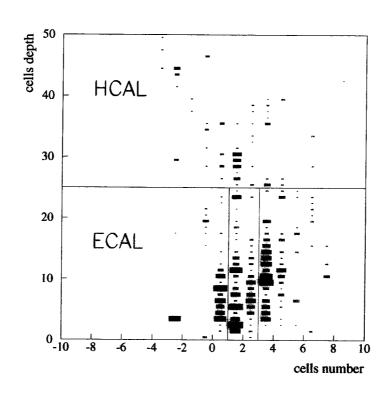
e[±]/photon ECAL resolution


pion calorimetric resolution

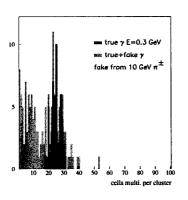
electron Identification

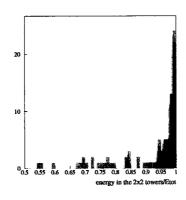


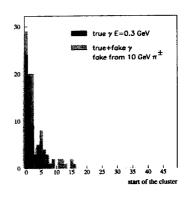

Keeping 100% of the electron, the rate of Misid. is very low $\varepsilon(\pi\to e)<6~10^{-3}~(~90\%~{\rm C.L.})$


Isolated tracks, no Brem, no error on momentum

Example of geometry without cracks CALOR. BARREL - View XY

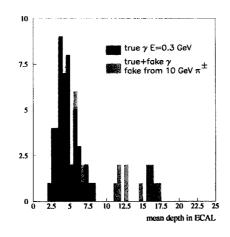

PHOTON + Charged PION .

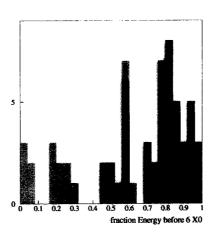




efficiency for low energy photon

With a specific clustering algorithm, the efficiency lies between 90% at 100MeV and 100% for E $\gamma=0.3$, 0.5 and 1. GeV





hadronic fake photon

Fraction of 10 GeV charged pion with at least 1 fake photon 10 ± 3 % (ALEPH value is 15 ± 0.1) %

It could be improved (see plot)

Conclusion

A HIGHLY SEGMENTED CALORIMETER

is the best choice for EFLOW and physics with jets

- excellent separation e μ π γ K_L^0 ,n
- 3D clustering
 - \rightarrow reconstruct low E photon at dist. \geq 1-2 cm
- \rightarrow reconstruct neutral hadron at dist. \geq 2-4 cm (clearly dependant of Eh and momentum of the closest charged)
 - → good rejection of hadronic fake photon
- direction of calorimetric object (noise reduction, interest for specific physics channels)
- the resolution, estimated from Geant, is about $0.15/\sqrt{E}$