Position sensitivity test of IP-BPM

P. Doublet, T. Hino, Y. Honda, Y. Inoue, T. Nakamura

2006/6/9

摘要
First beam test of IP-BPM was carried out in the ATF linac-end using the test model with a vacuum chamber. Position sensitivity was measured comparing with ATF2 Q-BPM. It was found that the relative sensitivity of Y-port and X-port with respect to Q-BPM were ×2 and ×1, respectively.

1 はじめに
IP-BPMはビーム角度感度を落とすために出来るだけ短い空洞に設計された。そのままでは位置感度も落ちてしまうが、代わりにビームホールを小さくしてインピーダンスを上げることで誘起される信号が程度になるように設計されている。また、ポートのカップリングを強くし(Q_{ext}を下げる) 時定数を小さくすることで、取り出される信号のピーク圧を上げるようにもしている。

今回はIP-BPMとして新しい設計をした空洞の始めてのビーム試験である。設計どおりの位置感度が達成されているか、また、信号波形を観測し異常形をしていないか、時定数は期待通りかなどの基本的な測定を行う必要がある。

2 セットアップ
今回はネジ止めタイプのテストモデルを真空チャンバーに入れてビーム試験することにした。取り出しラインにはスペースが無いため、リニアックの下流(ポジトレオンライン)で実験を行った。リニアックと取り出しラインのビームでは、ビームの安定度、ビームサイズ、パルチ長などに違いがある。このため、違うラインで測定した結果を直接比較することはできない。そこでATF2 Q-BPMのプロトタイプ (dents model) もリニアック下流に並べて設置し、同じビームで2種類のBPMを相対的に比較することにした。

図1のように、適当な治具を用意し真空チャンバーのフランジ部に単一セルで組み上げたBPMを取り付けた。BPMのフィードスルーから真空チャンバー側面に付いているフィードスルーまではSMAコネクタのついた短いケーブルで繋ぎ、チャンバー外側から信号が入るようにしている。

図2は現在のリニアック下流部のレイアウトである。四極磁石はオフにしてあるので、基本的なドリフトスベースである。2台のステアリング(ZV1P,ZH2P)でビームをY,X方向に動かし、実際のビームの位置は2台のストリップラインBPM(ML3P,ML2P)でモニターすることができる。

図3にBPM付近の写真を示す。上方から、ATF2 BPM, X-band BPM, X-band BPM, IP-BPMの順に並んでいる。X-band BPMは舊の実験のセットアップの残りであるが、今回の実験ではX-band BPMについているreference空洞の信号を読みدادして、ビーム強度モニターとして使用した。

図4に今回使用した回路系を示す。今回の測定ではX,Yそれぞれ片ボート読み出しを行い、使用しないボートはチャンバーのコネクタで50Ωに終端した。IP-BPM用に新たに製作したcombinerモジュールをトンネル内に置き、バンダパスフィルタとして使用した。このモジュールは、Xポート用には5.712GHz±300MHz、Yポート用には6.426GHz±300MHzに設計されている。また、1入力の
図 1: 真空チャンバーフランジ内側に BPM を取り付けた様子

図 2: リニアック下流部のレイアウト

図 3: BPM 付近の写真
3 測定と結果
3.1 波形の観測
図5に観測された波形を示す。それぞれATF2 BPMとIP-BPMのX-port,Y-portである。Y-portに関しては、見当目では特に問題ないう波形をしている。時定数は予定どおり短くなっていることが分かる。

図5: 検波後の波形

図6はX-portの信号があるときの波形である。基本的には減衰波形をしているが、少しく波打っているのが観測された。アンプやケーブルに問題無いかを交換して調べたりしたが問題なかったので、やはりX-portからの信号自体が波打っているらしい。このテストモデルの設計では、もともとX-portの導波管モードが空洞モードと重なっているという問題があることが分かっていたので、導波管モードとの干渉が波打ちの原因であると思われる。

3.2 位置感度
測定の始めにビームの安定度をML2Pを用いて測定したところ、ビーム位置のRMSがX方向が37.4μm、Y方向が61.5μmであった。これは2週間前にテストした時より2倍程度悪い値である。
図 6: X ポートの波形

このため、オシロスコープでの波形が十分安定しなかったのでアベレージをかけて読んだ。LNE の ICT の読み値では、ビーム強度は約 0.4×10^{10} e/bunch であり、測定の間で 10~20% 変動した。

ステアリングでビームを動かしながら、オシロスコープで波形を測定した。ストリップライン BPM でモニターしたビーム位置を外挿して空洞 BPM の場所でのビーム位置を計算し横軸とし、オシロスコープで測定したアベレージ波形のビーグ電圧を縦軸としてプロットした。図 7 が Y 方向の結果、図 8 が X 方向の結果である。Y 方向の測定の時は、X 方向の信号が最小になるあたりにビーム軌道を調整した後、Y 方向にスキャンした。X 方向も同様。

図 7: 位置感度測定 (Y 方向)

X 方向の感度は ATF2 BPM と同程度、Y 方向の感度は ATF2 BPM の約 2 倍であると見てとれる。V 字の先がまるまっているのは、ビームジッターの影響をアベレージをかけてみている為と思われる。
4 考察

ポートから取り出される電圧 \(V_{out} \) は、モードの周波数 \(f \)、パンチ電荷 \(q \)、パンチ長 \(\sigma \)、空間にできるインピーダンス \(R/Q \)、同軸ケーブルのインピーダンス \(Z = 50\Omega \)、ポートのカップリング \(Q_{ext} \) を用いて、以下のように表される。

\[
V_{out} = \frac{2\pi f}{2} \sqrt{\frac{Z}{Q_{ext}}} (R/Q) e^{-\frac{q^2+\sigma^2}{2Q^2}}.
\]

同じビームで相対的に比較する場合、共通するものは省いて書くと、

\[
V_{out} \propto f \sqrt{\frac{(R/Q)}{Q_{ext}}}.
\]

インストール後に測定した \(f, Q_{ext} \) の値と、MAFIA で計算した \(R/Q \) の値を用いて予想される相対的な感度を表1にまとめる。 \(R/Q \) は固有モードの電場を 1mm のオフセットを付けたライン上で線積分した値 \(V_{line} \) とモードの全エネルギー \(U \) から、

\[
R/Q = \frac{V_{line}^2}{\omega U}
\]

によって計算した。

<table>
<thead>
<tr>
<th>cavity</th>
<th>(f) (GHz)</th>
<th>(Q_{ext})</th>
<th>(R/Q) (1mm offset)</th>
<th>relative sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF2 Q-BPM</td>
<td>6.422</td>
<td>25000</td>
<td>1.00 (\Omega)</td>
<td>1.0</td>
</tr>
<tr>
<td>IP-BPM Y</td>
<td>6.422</td>
<td>2300</td>
<td>1.51 (\Omega)</td>
<td>4.1</td>
</tr>
<tr>
<td>IP-BPM X</td>
<td>5.705</td>
<td>2400</td>
<td>0.48 (\Omega)</td>
<td>2.0</td>
</tr>
</tbody>
</table>
測定結果と比較するとIP-BPMの感度はX,Y共に計算の約半分である。ネジ止めモデルのためQ₀が低いことの影響、小さなビームホールに対し、取り出しラインに比べて大きなビーム径のため、一部をロスしている可能性等を調べる必要がある。

5 まとめ

IP-BPMの位置感度をATF2 Q-BPMと比較して測定したところ、Y-port は2倍、X-port は1倍であった。これは予想された感度の半分である。信号の時定数は設計どおりQ-BPMに比べて1/3程度であった。Y-port の信号は見るかぎりきれいな波形をしているが、X-port の波形には波打ちが見られた。